-« redhat

Dynamic Linux Kernel
Instrumentation with SystemTap

DR

AN EEEY N

& 1t BaR R e B S A A (TOSSUG)
10 H 03 H (F—) Mix Coffee & Tea

Q, rednat.

Previous Linux Monitoring Tools

Examples: ps, netstat, vmstat, iostat, sar, strace, oprofile, etc

Drawbacks:

Application-centric tools are narrow in scope

Tools with system-wide scope present a static view of system behaviour but does
not let you probe further

Many different tools and data sources but no easy way to integrate them
Many kinds of problems are not readily exposed by traditional
tools:

interactions between applications and the operating system

Interactions between processes and kernel subsystems

Problems that are obscured by ordinary behaviour and require examination of an
activity trace

Q, redhat
SystemTap

A tool to enable a deeper look into a running system:

Provides a high-level script language to instrument unmodified running kernels
Exposes a live system activity and data
Provides performance and safety by careful translation to C

Includes growing library of reusable instrumentation scripts

Started January 2005
Free/Open Source Software (GPL)

Active contributions from Red Hat, Intel, IBM, Hitachi, and
others

Q, redhat
SystemTap Target Audience

Kernel Developer: | wish | could add a debug statement easily
without going through the compile/build cycle.

Technical Support: How can | get this additional data that is
already available in the kernel easily and safely?

Application Developer: How can | improve the performance of
my application on Linux?

System Administrator: Occasionally jobs take significantly
longer than usual to complete, or do not complete. Why?

Researcher: How would a proposed OS/hardware change affect
system performance?

Q, rednat.

SystemTap Overall Diagram

debug-info
ELF objects
C o O

TS
X

-\

x

@ernel

kprobes

relayfs

profiling

/systemtap

/translator

parse

» elaborate

translate

~ probe.stp -

script library

~— build

load/run

> store output

stop/unload

Q, rednat.

Tapsets

A tapset defines:

Probe points/aliases: symbolic names for useful instrumentation points

Useful data values that are available at each probe point

Written in script and C by developers knowledgeable in the
given area

Tested and packaged with SystemTap

Q, rednat.

Runtime Library

Implements some utilities:

Associative arrays, statistics, counters
Stack trace, register dump, symbol lookup
Safe copy from userspace

Output formatting and transport

Could also be used by C programmers to simplify writing raw
kprobes-based instrumentation

Q, redhat
Kprobes

C API to allow dynamic kernel instrumentation

Probe Point: An instruction address in the kernel
kp. addr = (kprobe_ opcode t *)
kal | syns | ookup_nane(" <kernel function name>");

Probe Handler: An instrumentation routine, as function pointer
kp. pre_handl er =handl er _pre;

kp. post handl er =handl| er _post ;
kp. fault _handl er=handl er _fault;

Replace the instruction at the probe points with a breakpoint
instruction

When the breakpoint is hit, call the probe handler

Execute the original instruction, then resume

Q, redhat
SystemTap Safety Goals

For use in production environment — aiming to be crash-proof
Uses existing compiler tool chain, kernel

Safe mode: Restricted functionality for production

Guru mode: Full feature set for development, debugging

Static analyser:

Protection against translator bugs and users errors

Detects illegal instructions and external references

Q, redhat
SystemTap Safety Features

No dynamic memory allocation
Types & types conversions limited

No assembly or arbitrary C code (unless -g or Guru mode is
used)

Kernel functions known to crash system when probed are
blacklisted:

default_do_nmi, _ die, do_int3, do_IRQ, do_page fault, do_trap,
do_sparc64 fault, do_debug, oops_begin, oops_end, etc

Discovered with our dejagnu stress test suite

Limited pointer operations

Q, rednat.

Dynamic Probing

Several underlying interfaces for inserting probes
Probepoints provide a uniform interface for identifying events of interest
Synchronous probepoints

kprobes, jprobes, kretprobes (dynamic)

SystemTap Marks (static)
Asynchronous events

Timers, Performance counters

Q, redhat
Static Probing

Probe point: wherever hooks are compiled in

Fixed probe handler: collect fixed pool of context data, dump it
to buffer; off-line post-processing

Low cost dormant probes

Dispatch cost low

Q, rednat.

Static Instrumentation Markers

Decoupling probe point and handler

To create: place it, name it, parametrize it. That's it:
STAP_MARK NN(cont ext _sw tch, prev->pi d, next->pid);

To use from SystemTap:
probe kernel.mark(“context _switch”) {print($argl)}

#defi ne STAP_MARK NN(n, al,a2) do { \
static void (* stap nmark ##n## NN)(int64 t,int64 t); \
I f (unlikely (__stap mark ##n## NN)) \
(void) (__stap nmark ##n## NN((al), (a2))); \
} while (0)

Q, rednat.

Static Instrumentation Markers

Marker-based top-process listing; placing a marker in a
sensitive spot (context switching)

e 1796 /*
1797 * context _switch - swtch to the new MW and t he new
1798 * thread's register state.
1799 */
1800 static inline struct task struct *
1801 context _switch(struct rq *rq, struct task struct *prev,

1802 struct task struct *next)

1803 {

1804 struct mmstruct *mm = next->nmm

1805 struct mmstruct *ol dmm = prev->active nmm

1806

1829 /* Here we just switch the register state and the stack. */
1830 STAP_MARK NN(context _switch, prev->pid, next->pid);

1831 switch to(prev, next, prev);

1832

1833 return prev,

1834)

Q, rednat.

Static Instrumentation Markers

e probe kernel.mark("context _switch") {

}

switches ++ # count nunber of context sw tches

now = get cycl es()

times[$argl] += nowlasttinme # accunulate cycles spent in process
execnanes[$argl] = execnane() # renmenber name of pid

| asttinme = now

probe tiner.ns(3000) { # every 3000 ns

printf ("\n%bs %20s %40s (% sw tches)\n",
"pid', "execnanme", "cycles", swtches);
foreach ([pid] in tinmes-) # sort in decreasing order of cycle-count
printf ("%d %0s %0d\n", pid, execnanmes[pid], tinmes[pid]);
clear data for next report
delete tines
switches = 0

stap mark-top.stp
pi d execnarne cycles (1813 swi tches)
0 swapper 764411819
4473 X 51465833
4538 gnone-t erm nal 33217978

4745 firefox-bin 24762308

Q, rednat.

Demonstrations

Let's trace and analyze open(2)
| nt open(const char *pathnane, int flags);
| nt open(const char *pathnanme, int flags, node t
node) ;
* Which system calls were executed when you run bash?
* What happens when you run a command?
* Which are the top 10 processes that use sys i oct| ?
°* Useplimts. stp to find out resource limits of processes
* Use pfil es. stp to find out opened fd of processes

* Use udpst at . st p to find out udp statistics

* Hook the kbd event to add functionalities to it

Q, rednat.

Things that you can write

Block I/O submissions & completions

240 ————4———— r———F——————————
- submitted —
- completed (——
W osubmitted {——
W completed ——

1s88 -

lege —

= % N

I
AA lﬁll il {\igyﬁﬁ L I H
I g0 B "'I -ITI 'II | | .1.r1||

16:15 16:3@ 16:45 17688 1-7:15 17:3@ 17145 1200 18:15 18:30@

Q, rednat.

Things that you can write

Is CPU busy nhow?

100 ' ' . .
f

ioblock, ~~——0
I\, cpu
el
({0 3
40
20 F
0

Q, rednat
SystemTap Demo Scripts

Scripts demonstrating various SystemTap features can be
found at http://sourceware.org/systemtap/documentation.htmi

top.stp — print the top twenty system calls.
prof.stp — simple profiling.

keyhack.stp — modifying variables in the kernel.
kmalloc.stp — statistics example.

kmalloc2.stp — example using arrays of statistics.

ansi_colors.stp — example using \0?? to display ansi colours.
For example:

« $ stap top.stp

http://sourceware.org/systemtap/documentation.html

Q, rednat.

War Stories

We are compiling a list of SystemTap stories, and interesting
demos

If you have a SystemTap success story, do share with us at
http://sourceware.org/systemtap/wiki/WarStories

http://sourceware.org/systemtap/wiki/WarStories

Q, rednat.

Further Information

Website: http://sources.redhat.com/systemtap
Wiki: http://sources.redhat.com/systemtap/wiki
Mailing list: systemtap@sources.redhat.com

IRC channel: #systemtap on irc.freenode.net

http://sources.redhat.com/systemtap
http://sources.redhat.com/systemtap/wiki
mailto:systemtap@sources.redhat.com

Eugene Teo, eteo@redhat.com

mailto:eteo@redhat.com

- redhat

Dynamic Linux Kernel
Instrumentation with SystemTap

eV

AN EEEY N

& LB R IE TSRS & A (TOSSUG)
10 03 H (A=) Mix Coffee & Tea

O. redhat.

Previous Linux Monitoring Tools

Examples: ps, netstat, vmstat, iostat, sar, strace, oprofile, etc

Drawbacks:

Application-centric tools are narrow in scope

Tools with system-wide scope present a static view of system behaviour but does
not let you probe further

Many different tools and data sources but no easy way to integrate them
Many kinds of problems are not readily exposed by traditional
tools:

interactions between applications and the operating system

Interactions between processes and kernel subsystems

Problems that are obscured by ordinary behaviour and require examination of an
activity trace

O. redhat.
SystemTap

A tool to enable a deeper look into a running system:
Provides a high-level script language to instrument unmodified running kernels
Exposes a live system activity and data
Provides performance and safety by careful translation to C

Includes growing library of reusable instrumentation scripts

Started January 2005
Free/Open Source Software (GPL)

Active contributions from Red Hat, Intel, IBM, Hitachi, and
others

O. redhat.
SystemTap Target Audience

Kernel Developer: | wish | could add a debug statement easily
without going through the compile/build cycle.

Technical Support: How can | get this additional data that is
already available in the kernel easily and safely?

Application Developer: How can | improve the performance of
my application on Linux?

System Administrator: Occasionally jobs take significantly
longer than usual to complete, or do not complete. Why?

Researcher: How would a proposed OS/hardware change affect
system performance?

O. redhat.

SystemTap Overall Diagram

(debug-info a3 outlin
ELF objects

D \
XX
TS

runtime,
C tapsets

XD
XD
XD

profiling stop/unload

O. redhat.

Tapsets

A tapset defines:

Probe points/aliases: symbolic names for useful instrumentation points

Useful data values that are available at each probe point

Written in script and C by developers knowledgeable in the
given area

Tested and packaged with SystemTap

O. redhat.

Runtime Library

Implements some utilities:
Associative arrays, statistics, counters
Stack trace, register dump, symbol lookup
Safe copy from userspace
Output formatting and transport

Could also be used by C programmers to simplify writing raw
kprobes-based instrumentation

O. redhat.
Kprobes

C API to allow dynamic kernel instrumentation

Probe Point: An instruction address in the kernel

kp. addr = (kprobe_opcode_t *)

kal | syms_| ookup_name(" <kernel function name>");
Probe Handler: An instrumentation routine, as function pointer
kp. pre_handl er =handl er _pre;

kp. post _handl er =handl er _post;

kp. faul t _handl er =handl er _faul t;

Replace the instruction at the probe points with a breakpoint
instruction

When the breakpoint is hit, call the probe handler

Execute the original instruction, then resume

O. redhat.
SystemTap Safety Goals

For use in production environment — aiming to be crash-proof
Uses existing compiler tool chain, kernel

Safe mode: Restricted functionality for production

Guru mode: Full feature set for development, debugging

Static analyser:

Protection against translator bugs and users errors

Detects illegal instructions and external references

O. redhat.
SystemTap Safety Features

No dynamic memory allocation
Types & types conversions limited

No assembly or arbitrary C code (unless -g or Guru mode is
used)

Kernel functions known to crash system when probed are
blacklisted:

default_do_nmi, __die, do_int3, do_IRQ, do_page_fault, do_trap,
do_sparc64._fault, do_debug, oops_begin, oops_end, etc

Discovered with our dejagnu stress test suite

Limited pointer operations

O. redhat.

Dynamic Probing

Several underlying interfaces for inserting probes
Probepoints provide a uniform interface for identifying events of interest
Synchronous probepoints

kprobes, jprobes, kretprobes (dynamic)

SystemTap Marks (static)
Asynchronous events

Timers, Performance counters

O. redhat.
Static Probing

Probe point: wherever hooks are compiled in

Fixed probe handler: collect fixed pool of context data, dump it
to buffer; off-line post-processing

Low cost dormant probes

Dispatch cost low

O. redhat.

Static Instrumentation Markers

Decoupling probe point and handler

To create: place it, name it, parametrize it. That's it:
STAP_MARK_NN(cont ext _swi t ch, prev->pi d, next - >pi d);

To use from SystemTap:
probe kernel . mark(“context_swi tch”) {print($argl)}

#defi ne STAP_MARK NN(n, al,a2) do { \
static void (*__stap_mark_##n## NN) (i nt64_t,int64_t); \
if (unlikely (__stap_mark_##n## NN)) \
(void) (__stap_mark_##n## NN((al), (a2))); \
} while (0)

O. redhat.

Static Instrumentation Markers

Marker-based top-process listing; placing a marker in a
sensitive spot (context switching)

e 1796 /*
1797 * context_switch - switch to the new MM and the new
1798 * thread's register state.
1799 */
1800 static inline struct task_struct *
1801 context_swi tch(struct rq *rq, struct task_struct *prev,

1802 struct task_struct *next)

1803 {

1804 struct mmstruct *mm = next->nmm

1805 struct mmstruct *ol dmm = prev->active_nm

1806

1829 /* Here we just switch the register state and the stack. */
1830 STAP_MARK_NN(cont ext _swi t ch, prev->pid, next->pid);

1831 swi tch_to(prev, next, prev);

1832

1833 return prev;

1834 }

O. redhat.

Static Instrumentation Markers

+ probe kernel.mark("context_switch") {
switches ++ # count number of context switches
now = get_cycl es()
times[$argl] += nowlasttinme # accumulate cycles spent in process
execnanes[$argl] = execnane() # renenber name of pid
lasttime = now

probe tiner.ns(3000) { # every 3000 ns
printf ("\n%s %0s %0s (%l switches)\n",
“pid", "execnanme", "cycles", sw tches);
foreach ([pid] in times-) # sort in decreasing order of cycle-count
printf ("%d 9%0s %0d\n", pid, execnanes[pid], times[pid]);
clear data for next report
delete tines
switches = 0

}
e # stap mark-top.stp
pid execnane cycles (1813 swi tches)
0 swapper 764411819
4473 X 51465833
4538 gnone-t er m nal 33217978

4745 firefox-bin 24762308

O. redhat.

Demonstrations

Let's trace and analyze open(2)
i nt open(const char *pathname, int flags);
i nt open(const char *pathname, int flags, node_t
node) ;
* Which system calls were executed when you run bash?
* What happens when you run a command?
* Which are the top 10 processes that use sys_i oct| ?
* Useplimts.stp to find out resource limits of processes
* Usepfil es. stp to find out opened fd of processes

* Use udpst at . st p to find out udp statistics

* Hook the kbd_event to add functionalities to it

O. redhat.

Things that you can write

Block I/0O submissions & completions

2000 T T
- submitted
r completed f———
w submitted f———
w completed ——
1500 —
1000 —
580 - B

5] L f 2, 2
16:15 16:38 16:45 17:80 17:15 17:3@ 17:45 18:00 18:15 18:30

O. redhat.

Things that you can write

Is CPU busy now?

100

80

BO

40 |

20

O. redhat.

SystemTap Demo Scripts

Scripts demonstrating various SystemTap features can be
found at http://sourceware.org/systemtap/documentation.htmil
top.stp — print the top twenty system calls.
prof.stp — simple profiling.
keyhack.stp — modifying variables in the kernel.
kmalloc.stp — statistics example.
kmalloc2.stp — example using arrays of statistics.
ansi_colors.stp — example using \0?? to display ansi colours.
For example:

e $ stap top.stp

O. redhat.

War Stories

We are compiling a list of SystemTap stories, and interesting
demos

If you have a SystemTap success story, do share with us at
http://sourceware.org/systemtap/wiki/WarStories

O. redhat.

Further Information

Website: http://sources.redhat.com/systemtap
Wiki: http://sources.redhat.com/systemtap/wiki
Mailing list: systemtap@sources.redhat.com

IRC channel: #systemtap on irc.freenode.net

Eugene Teo, eteo@redhat.com

